Benha University

Computer Systems Engineering Electrical Engineering Department

Faculty of Engineering (at Shoubra)

Sheet 3 - Sol

I Solve the following Review Problems from Computer Science: An Overview:

- 1.1

Build the truth table by trying all possible combinations of input and computing the corresponding output.

a)					b)					c)				
Input	1	1	0 1	0	Input	1	1	0	0	Input	1	0	0 1	0 0
Output	1	0	0	1	Output	1	0	1	0	Output	1	0	1	0

- 1.2

Build the truth table in the same way like the previous question.

a)					b)				
From the truth table:					From the truth table:				
Input	1	1	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	0	Input	1	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	0 1	0
Output	1	0	0	0	Output	0	1	1	0

- 1.6

Number of possible values that can be written in base B using n digits $=B^{n}$
For example, using 4 digits in base 10 , we can write $10^{4}=10,000$ values (0000 to 9999)
Using two hexadecimal digits: $16^{2}=256$ cells
Using four hexadecimal digits: $16^{4}=65536$ cells

- 1.8

Convert the given numbers from hexadecimal notations to binary system by replacing every hexadecimal digit with its equivalent four bits and identify the most significant bit.

Actually, it is enough to convert only the most significant hexadecimal digit.

a$)$	b)	c)	d)
$8 \mathrm{~F}=\mathbf{1 0 0 0 1 1 1 1}$	$\mathrm{FF}=\mathbf{1} 1111111$	$6 \mathrm{~F}=\mathbf{0 1 1 0 1 1 1 1}$	$1 \mathrm{~F}=\mathbf{0 0 0 1} 1111$

- 1.9

Combine every four bits into the equivalent hexadecimal digit.

a)	b)	c)
$101000001010=A 0 A$	$11000111 \quad 1011=C 7 B$	$00001011 \quad 1110=0 \mathrm{BE}$

Benha University

II Answer the following questions:
1.

Mbit/s: Mega Bit Per Second
MB: Mega Byte
GB: Giga Byte
Movie size $=1 \mathrm{~GB}=1024 \mathrm{MB}=1024 \times 8 \mathrm{Mbit}$
Download time $=1024 \times 8 / 4=1024 \times 2=2048$ Seconds ≈ 34 Minutes
2.

Using only one bit, \quad we can address $2^{1}=2$ drawers $\quad\{0,1\}$
Using two bits,
Using three bits,
Using four bits,

Computer Systems Engineering Electrical Engineering Department

Then we need 4 bits.
Another way to solve the question is to find $\left\lceil\log _{2}(12)\right\rceil=\lceil 3.3\rceil=4$
3.
a) Bit

Binary Digit
$\{0,1\}$
b) Byte

1 Byte $=8$ Bit $\{00000000,00000001,00000010, \ldots, 11111111\}$
c) Boolean Operation

Mathematical operation performed on binary digits
\{AND, OR, XOR, NOT\}

